Are you tired of slow modem connections? Cellonics Incorporated has developed new technology that may end this and other communications problems forever. The new modulation and demodulation technology is called Cellonics. In general, this technology will allow for modem speeds that are 1,000 times faster than our present modems. The development is based on the way biological cells communicate with each other and nonlinear dynamical systems (NDS). Major telcos, which are telecommunications companies, will benefit from the incredible speed, simplicity, and robustness of this new technology, as well as individual users.
INTRODUCTION: In current technology, the ASCII uses a combination of ones and 1zeros to display a single letter of the alphabet (Cellonics, 2001). Then the data is sent over radio frequency cycle to its destination where it is then decoded. The original technology also utilizes carrier signals as a reference which uses hundreds of wave cycles before a decoder can decide on the bit value (Legard, 2001), whether the bit is a one or a zero, in order to translate that into a single character.
The Cellonics technology came about after studying biological cell behaviour. The study showed that human cells respond to stimuli and generate waveforms that consist of a continuous line of pulses separated by periods of silence. The Cellonics technology found a way to mimic these pulse signals and apply them to the communications industry (Legard, 2001). The Cellonics element accepts slow analog waveforms as input and in return produces predictable, fast pulse output, thus encoding digital information and sending it over communication channels. Nonlinear Dynamical Systems (NDS) are the mathematical formulations required to simulate the cell responses and were used in building Cellonics. Because the technique is nonlinear, performance can exceed the norm, but at the same time, implementation is straightforward (Legard, 2001).
This technology will be most beneficial to businesses that do most of their work by remote and with the use of portable devices. The Cellonics technology will provide these devices with faster, better data for longer periods of time (Advantages, 2001). Cellonics also utilizes a few discrete components, most of which are bypassed or consume very little power. This reduces the number of off the shelf components in portable devices while dramatically decreasing the power used, leading to a lower cost for the entire device. The non-portable devices of companies will benefit from the lack of components the machines have and the company will not have to worry so much about parts breaking.
THE CELLONICS™ CIRCUITS: Cellonics Inc. has developed and patented families of Cellonics™ circuits that are useful for various applications. One of these Cellonics™ circuits is an extremely simple circuit that exhibits the “Scurve” transfer characteristic. Fig 3a shows one of the possible circuit realizations. The circuit contains a negative impedance converter. Its iv transfer characteristic is shown in Fig 3b.Thetransfer characteristic consists of three different regions. The two lines at the top and bottom have positive slope, 1/RF and they represent the regions in which the Op-Amp is operating in the saturated (nonlinear) mode. In Fig 3b, the middle segment has a negative slope (negative resistance)
Cellonics™ Advantages: The impact of Cellonics™ is such that it effects a fundamental change in the way digital communications have traditionally been done. As such, many communication devices will benefit from its incredible simplicity, speed and robustness.
Devices built with the Cellonics™ technology will save on chip/PCB real estate, power and implementation time.
1. New Life to Communication Devices: The strength of the Cellonics™ technology lies in its inherent Carrier-rate Decoding™ (i.e. extremely fast decoding rate), multilevel capability (spectral efficiency), simple circuitry, low power consumption and low cost. Some telecommunication application examples in wireless communication are cellular networks(2/3/4 G and beyond), W-LAN/Home networks ,LMDS, broadcasting, military radio, RF identification tags, low cost radar with fine range precision and sensor for automobiles. In wire line communication, some areas where the Cellonics™ technology is deployable are: high-speed modem cable modem, xDSL), LAN/Home networks, backbone telephony/data networks, power line communications and military applications. Beyond its application in telecommunication, the Cellonics ™ technology is also applicable in the electronics circuits such as gated oscillators, delta modulators, sigma-delta modulators and clock multipliers, etc.
2:Savings on Chip/ PCB Real Estate Because of its simplicity, a receiver implemented with Cellonics™ can save as much as 4 times the chip real estate. (Comparison made with a zero-IF receiver designed with the same 0.8Mm BiCMOS process.)
3:Savings on Power Using the same design and comparison above, it was found that a Cellonics™-based receiver consumed 3 times less power. This is possible because a Cellonics™ circuit is built with a few discrete components that are mostly passive and hence consume very little or negligible power. Cellonics™ returns a high 'power budget' back to a communication device. Designers can use this 'extra' power to 'finance' other power-needy features in a device such a color screen, GPS receiver, etc. Else, the device will simply end up having a longer battery life. (As in the case of mobile phones).
4:Savings in Implementation Time In a receiver, the Cellonics™ circuit replaces many traditional subsystems such as the amplifier, mixer, PLL, oscillator, filter, crystal quartz, etc. that are necessary in a common Super heterodyne and Super homodyne design. These parts in these subsystems can be costly, fragile and noisy. Aside from this, the subsystems need great expertise to be put together and fine-tuned. It is also difficult to miniaturize. With the simplicity and robustness of Cellonics™, implementation time is swift without the sacrifice on performance.
5:Build or Rejuvenate your Products with Cellonics™ The incredible simplicity, low cost, low power consumption of Cellonics™ makes it ideal for use in your next generation of feature-rich products that need to be small in size and long on power reserve. Else, the technology is also ideal in giving your current products a new low- cost and power-saving receiver engine.
Conclusion: The Cellonics communication method is one inspired by how biological cells signal. It is a fresh and novel look at how digital signals may be conveyed. In this digital day and age, it is timely; current digital communication designs are mostly derived from old analog signal methods. With the Cellonics method, much of the sub-systems in a traditional communication system are not required. Noise-generating and power-consuming systems such as voltage-controlled oscillators, PLLs, mixers, power amplifiers, etc., are eliminated. To a communications engineer, this is unheard off. One just doesn’t build a communication device without an oscillator, mixer, etc.
Such is the revolutionary impact of Cellonics. Engineers will have to reform their thinking- that such a simple solution is possible.